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Strict Positivity of a Solution to a One-Dimensional
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We consider the solution of a one-dimensional Kac equation without cutoff
built by Graham and Méléard. Recalling that this solution is the density of a
Poisson driven nonlinear stochastic differential equation, we develop Bismut’s
approach of the Malliavin calculus for Poisson functionals in order to prove
that this solution is strictly positive on ]0, oo[ x R.
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INTRODUCTION

We prove by a probabilistic approach the strict positivity of a solution of
a one dimensional Kac equation without cutoff, in the case where the cross
section does sufficiently explode. In the cutoff case, much more is known:
Pulverenti and Wennberg, '* have proved, by using analytic methods, the
existence of a Maxwellian lowerbound. But their proof is based on the
separation of the gain and loss terms, which typically cannot be done in
the present case. Let us also mention that similar results about the
Laudau equation, obtained by analytic methods, can be found in Arsen’ev,
Buryak,® and Villani.!® But no result seems to have been found by the
analysts in the case of the Boltzmann or Kac equation without cutoff.

The solution we study has been built by Graham and Méléard in
ref. 11, who follow the ideas of Tanaka,™ and use the Malliavin calculus.
This solution f{(¢, v) can be related with the solution V, of a Poisson driven
nonlinear S.D.E.: for each >0, f(, -) is the density of the law of V,. We
will thus study f as the density of a Poisson functional.

! Laboratoire de Probabilités, UMR 7599, Université Paris VI, F-75252 Paris Cédex 05,
France; e-mail: fournier(@proba.jussieu.fr.
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The strict positivity of the density for Wiener functionals has been
worked out by Aida, Kusuoka, Stroock,"’ and Ben Arous, Léandre,™® see
also Bally, Pardoux.”® In ref. 10, the strict positivity of the density for
Poisson driven S.D.Es is studied in the case where the intensity measure of
the Poisson measure is the Lebesgue measure. The method is adapted from
a work of Bally and Pardoux,® which deals with a similar problem in the
case of white noise driven S.P.D.E.s, ie., with Wiener functionals. This
method is based on Bismut’s approach of the Malliavin calculus, which
consists in perturbing the processes, see, e.g., Bichteler, Jacod,® for the
case of classical diffusion processes with jumps. Nevertheless, we can not
directly apply the results of ref. 10. We can not either use exactly the same
Malliavin calculus as Bichteler and Jacod, because the intensity measure
of our Poisson measure will not be the Lebesgue measure. We generalize
a Malliavin calculus adapted to our model, inspired by Graham and
Méléard.tV

Let us say a word about the difference between the techniques in the
case of Wiener functionals and Poisson functionals. The main difference is
that the Malliavin calculus does product integrals with respect to the
Lebesgue measure in the first case, and with respect to the Poisson measure
in the second case. We thus have to deal with random perturbations and
with stopping times instead of deterministic perturbations and times. This
is why the assumptions are very stringent in ref. 10. Nevertheless, the
method gives a quite good result in the case of the Kac equation without
cutoff.

The present work is organized as follows. In Section 1, we recall the
Kac equation, we give the results of Desvillettes, Graham, and Méléard
in refs. 8 and 11, who solved this equation, and we state our result. In
Section 2, we define rigorously our “perturbations,” and we state a criterion
of strict positivity. At last, we apply this criterion in the next sections.

1. THE KAC EQUATION WITHOUT CUTOFF,
THE MAIN RESULT

The Kac equation deals with the density of particles in a gaz. We
denote by f{(¢, v) the density of particles which have the velocity v € R at the
instant > 0. Then

0 n
T o= L) A ) = fUt ) S o,)] O dO d,

(1.1)



Strict Positivity of a Solution to a 1D Kac Equation Without Cutoff 727

where
v'=vcos—v,sin0; v, =vsin 0+v, cos 0 (1.2)

and £ is a non cutoffed cross section, i.e., an even and positive function on
[ —7, n]\{0} satisfying

j” 028(0) dO < o (13)
0

The case with cutoff, namely when jg p(0) df < o0, has been much investi-
gated by the analysts, and they have obtained some existence, regularity
and strict positivity results.

In refs. 8 and 11, Desvillettes, Graham and M¢léard give an existence
and regularity result for such an equation, by using the probability theory.
See also Desvillettes,® for another statement (using the Fourier Theory),
and Desvillettes” or Fournier® for the 2-dimensional case. We are inter-
ested in this paper in the strict positivity of the solution of (1.1) built by
Graham and Méléard in ref. 11. Let us recall their main results.

First, we will consider solutions in the following (weak) sense.

Definition 1.1. Let P, be a probability on R that admits a

moment of order 2. A positive function f on R* xR is a solution of (1.1)
with initial data P, if for every test function ¢ € C3(R),

[ fa o g

=j ¢(U)P0(dv)+[tj j K*(v,v,) f(s, v) f(s, v*) dv dv* ds
veR 0veRYv*eR
(1.4)
where
K¥0,0,) = —bog'(0) + [ {$(vcos 0—v,,sin 0) — g(v)
—[v(cos 0—1)—wv, sin 0] ¢'(v)} p(O) dO (1.5)
and
b= j (1—cos ) B(8) df (1.6)

Notice that 5 and the collision kernel K¢ are well defined thanks to (1.3).
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In refs. 8 and 11, one assumes that
Assumption (H):

1. The initial data P, admits a moment of order 2, and is not a Dirac
mass at 0.

2. p=pPo+ B, where f; is even and positive on [ —z, #]\{0}, and
there exists k,>0, 6,10, 7/2[, and re]l,3[ such that pSy(0)=
(ko/101") 1 _g,,0,1(0). We still assume [ 0°5(6) df < co.

They also build the following random elements:

Notation 1.2. We denote by N, and N, two independant Poisson
measures on [0, 7] x [0, 1] x[ —=, =], with intensity measures:

vo(d0, da, ds) = fo(0) dO dods;  vy(dO, do, ds) = B,(0) d0 duds — (1.7)

and by N, and N, the associated compensated measures. We will write
N=Ny+ N,. We consider a real valued random variable V, independant
of N, and N,, of which the law is P,. We also assume that our probability
space is the canonical one associated with the independent random
elements V,, N,, and N;:

(Q, 7,47}, P)=(Q, 7' {F'},P)®(Q° 7° {7}, P°)
QL7 {7}, P" (1.8)

We will consider [0, 1] as a probability space, denote by do the Lebesgue
measure on [0, 1], and denote by E, and %, the expectation and law on
([0, 1], #([0, 1]), da).

The following theorem is proved in ref. 8§ (Theorem 3.6, p. 11).

Theorem 1.3. There exists a process { V,(w)} on 2 and a process
{W,/a)} on [0, 1] such that (b is defined by (1.6))

[" Tlcos0—1) V() ~ (sin 0) W, (2]

—T7

Vi) =Vl + | [

- ‘ (19)
x N(w, d6 do ds) — b f V. (w)ds

0
L(W)=2L(V);  E(sup V)<

[0, 7]
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At last, Graham and M¢léard show in ref. 11 the following theorem
(see Theorem 1.6, Corollary 1.8, p. 4)

Theorem 1.4. Assume (H). Let (V, W) be a solution of (1.9). Then
for all >0, the law of ¥, admits a density f{(z,-) with respect to the
Lebesgue measure on R. The obtained function f is a solution of the Kac
equation (1.1) in the sense of Definition 1.1. Assume furthermore that P,
admits some moments of all orders. Then for each 7> 0, the function f{(z, -)
is of class C* on R.

Let us now give our assumption, which is more stringent than (H): we
need a stronger explosion of the cross section.

Assumption (SP):

1. The initial data P, admits moments of all orders, and is not a
Dirac mass at 0.

2. B=po+ P, where S, is even and positive on [ —z, z]\{0}, and
there exists ky>0, 6,e]0,7/2[, and re]2,3[ such that fSy(0)=
(ko/101") 1 _g, 6,1(0). We still assume [§ 0°5(0) df < co.

Our result is the following:

Theorem 1.5. Assume (SP), and consider the solution in the sense
of Definition 1.1 of Eq. (1.1) built in Theorem 1.4. Then f'is strictly positive
on ]0, + o[ xR.

In (SP), we do not really need the fact that P, has moments of all
orders, but only the fact that the density f(z, v) of the law of V, built in
Theorem 1.4 is continuous on R for each 7> 0.

Notice that our method does not work in the case where r belongs to
11, 2[: we do really need a large explosion of the cross section at 0.

In the whole work, we will assume (SP), use Notation 1.2, and con-
sider a solution (V, W) of (1.9).

2. A CRITERION OF STRICT POSITIVITY

This section contains two parts. We first introduce some general
notations and definitions about Bismut’s approach of the Malliavin calculus
on our Poisson space. We follow here Bichteler, Jacod,”® Graham and
Méléard.'"V Then we adapt the criterion of strict positivity of Bally,
Pardoux,® (which deals with the Wiener functionals) to our probability
space.
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Definition 2.1. A predictable function v(w, s, 6, a) on Qx [0, T']
X[ —0y,0,]x[0,1] is said to be a “perturbation” if for all fixed w, s, a,
v(w,s,.,a) is C! on [ —0,,0,], and if there exists some even positive
(deterministic) functions # and p on [ —6,, 6,] such that

lo(s, 0, )| <n(0);  |¥'(s. 0. )] < p(0) (2.1)
0
<Dl (=00 =n(05)=0 (22)
if 5<0)=p(0>+r2'+2|(0‘9|) then 2], <5 and EeL'(Bo(0) do)
(23)

Notice that thanks to (2.3), # and p are in L' n L®(B,(0) d0).
Consider now a fixed perturbation v. For Ae[ —1, 1] we set

yA(s, 0, &) =0 + Av(s, 0, ) (2.4)
Thanks to (2.1), (2.2), and (2.3), it is easy to check that for each 4, s, «,
@, y*(s, -, a) is an increasing bijection from [ —6,, 6,]1\{0} into itself. Then

we denote by N#=7y*N,) the image measure of N, by *: for any Borel
subset 4 of [0, T]x[ —0,,0,]x[0,17,

N%A):ﬁlj" 1,(s, 9"
(8,775, 0, &), o) No(dO dox ds) (25)
0 Y0

We also define the shift S* on Q by
VOOSZ'ZVO; NOOSAZN(])'; NIOSAZNI (2.6)
We will need the following predictable function:

Bo(7*(s, 0, )
Bo(0)

Then it is easy to check that for all Ae[ —1,1],

Y*(s, 0, ) = (1+40'(s, 0, 0)) (2.7)

YA YA'VO):VO (2.8)
and for all 4, ue[ —1, 1] (recall that & is defined in (2.3)),

| Y(s, 0, a) = Y*(s, 0, )| < |4 —pl x &(0) (29)
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In order to check (2.9), it suffices to use on one hand

Bo(y*(s, 0, ) — Boly*(s, 0, 1))
Bo(0)

<

[(A—=w) v(s, 0, )] sup | Bo(d)]

Bo(0) $e [, 0, a), (s, 6, )]

then the explicit expression of f,, S, the fact that if >0 (resp. 6 <0),
then [y(s, 0, ), (s, 0,2)1<]0,7], (resp. [y(s,0,2), p(s,0,2)] <
[ ==, 0[), and on the other hand

| Bo(7*(s, 0, )| < [ Bo(O)] + | Bo(p*(s. 0, 00)) — Bo(y°(s, 0, )

then the same computation as above.
We also consider the following martingale

M# = jo jol f (Y*(s, 0, ) — 1) No(dO dox ds) (2.10)

—7

and its Doléans-Dade exponential (see Jacod and Shiryaev,(!®)

Gr=E(M*,=e™ T[ (1+4M?%)e=4M; (2.11)
0<s<t
Since | Y*— 1] < &< 1/2, it is clear that G* is strictly positive on [0, T'] a.s.
We now set P*=G?%.P. Using Eq. (2.8), and the Girsanov Theorem for
random measures (see Jacod and Shiryaev,""® p. 157) one can show that
P*o(S*)~!'=P, ie, that the law of (V,, N, N;) under P* is the same as
the one of (Vy, Ny, N;) under P.
We at last check the following lemma:

Lemma 2.2. Let v be a perturbation, and G* the associated expo-
nential martingale. Then a.s., the map 4+ G% is continuous on [ —1, 1].

Proof. Since |Y*—1|<&eL'(By(0)dl), the compensated integrals
can be splitted, and one obtains

G’;zexp{ fjj Yﬂ(sea—l)ﬁo()dedads}

<on [,

In Y*(s, 0, ) No(dO dot ds)} (2.12)
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Thanks to (2.9), it is clear that the first term in the product is continuous.
Furthermore, we deduce from (2.9) and the fact that £<1/2 that for
all 4, u,

[In Y*(s, 0, 2) —In Y#4(s, 0, 2)| <2 | Y*(s, 0, a) — Y#(s, 0, a)|
<2 |A—ul x &) (2.13)

Since ¢ is in L'(fo(0) dO) the random variable [§ [ [, &(0) No(d0 do ds) is
a.s. finite, hence

fﬁﬁmYW&@MWW%) (2.14)

is a.s. Lipschitz on [ —1, 1], and the second term in (2.12) is also con-
tinuous. The lemma is proved.
We now give the criterion of strict positivity we will use.

Theorem 2.3. Let X be a real valued random variable on 2, such
that PoX ~'= p(x) dx, with p continuous on R, and let y,€R. Assume
that there exists a sequence v,, of perturbations such that, if X"(1) = X S?%,
then for all n, the map

I X"(2) (2.15)

is a.s. twice differentiable on [ —1, 1]. Assume that there exists ¢ >0, 6 >0,
and k < oo, such that for all r >0,

lim P(A"(r))>0 (2.16)
where
Ay =L 15— yol <, |2 xo0)| >
r)= Yo r, a/{ C,
sup { X" H k} (2.17)
Al <o
Then p(y,)>0.

In order to prove this criterion, we will use the following uniform local
inverse theorem, that can be found in Aida, Kusuoka, and Stroock.”
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Lemma 2.4. Let ¢>0, 6>0, and k< oo be fixed. Consider the
following set:

4 ={g: R—>R/[g'(0)| >c, sup [|gx)[+[g'(x)|+Ig"(X)1<k} (2.18)

x| <o

Then there exists >0 and R>0 such that for every ge ¥, there exists
a neigbourhood 7, of 0 contained in ]— R, R[ such that g is a diffeo-
morphism from ¥, to ] g(0)—«, g(0)+«f.

Since this lemma deals with the behaviours near 0, it can obviously be
adapted to functions from [ —1, 1] to R.

Proof of Theorem 2.3. Step 1. First notice that for all r<1, for
all n, and all w e A™(r),

sup |X™(@, 1) <|X"(e, 0)] + 0k = | X(w)| + 0k < |vo| + 1 +0k =k' (2.19)

Al <o

Thus, using Lemma 2.4, there exists « >0 and Re ]0, 1] (depending only
on J, ¢, k, and k'), such that for all r<1, all ne N, and all we A"(r), there
exists V,(w) a neighbourhood of 0 contained in ] — R, R[ such that the
map

A X", 1) (2.20)

is a difftomorphism from V, (w) to JX"(w,0)—o, X"(@,0)+af =
1X(w) — o, X(w)+af.

Choosing o small enough, we can assume that R < ¢/2k. Thus, for all
we A"(r) and AeV, (w), we have |[(0/04) X"(A)| = ¢/2.

We now fix r <a, and choose n large enough such that P(A"(r)) > 0.

Step 2. The perturbations have been built in order to obtain, for all
J and all fe C;f(R),

E(f(X)) = E(f(X"(2)) G7(4)) (2.21)

Thus

B0 =4[ EA() @) di

—1

>1E { f FX(2)) GI(A) diox 1 guyy (2.22)

n
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Using the first step, we substitute y = X"(4), and we obtain:

Gr{X" 7T (»)
(0/02) X"({X™} = ()]

1 GT({X" 71 (»)

1
E(f(X))>E[ | ) dy x 1An(,)}
2 1X—a, X+af |

(223)

where ¢ is a continuous function on R™ such that 1, ,; <@ <1 . We
set

Gr({x" = (»)
|(0/07) X"({ X"} =1 (»)]

1
Hn(y)=E{2</)(|Xy|)<l A >x1An(,)] (2.24)

Step 3. On one hand, it is clear that 0,(y,) >0 (recall the definition
of A"(r), recall that G7 is strictly positive, and that P(A4"(r))>0). On the
other hand, one can show by using the Lebesgue Theorem and Lemma 2.2
that 6, is continuous. We can easily conclude, by using the continuity of p,
and the fact that for all f'e C;/(R),

[ 15y pyady= [ f(3)0,(9) dv (2.25)

R R

We at last state a usefull remark.

Remark 2.5. If X is a real valued random variable on ©, admitting
a continuous density p with respect to the Lebesgue measure on R, and if
for all yesupp PoX ~!, p(y) >0, then p is strictly positive on R.

Proof. Since the support of the law of X is a closed set, we see that
for yed{supp Po X '}, p(y)>0. Assume that (supp PoX ~')°# . Then
there exists {y,} =(supp PoX ~')¢ such that y,— yed{supp P-X ~'}.
Since p is continuous, we deduce that p(y)=0. Thus (supp Po X 1=,
and the proof is finished.

In order to prove Theorem 1.5, we will of course apply the previous
criterion. In fact, we will only prove that f(7,-) is strictly positive on R,
which suffices since 7 has been arbitrarily fixed. In the next section, we will
consider a fixed perturbation v,, and we will compute V7(4) and its
derivatives for any te [0, T]. Section 4 is devoted to the explicit choice
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of the sequence v, of perturbations. In Section 5, we will prove (for some
constant ¢ >0) that

lim P<‘V” ‘ g>=1 (2.26)

n— oo

At last, we will check in Section 6 that for some constant K,

lim P < sup

n— 0 Al <1

’ ‘V" ’ >=1 (2.27)

Since for all yoesupp Po V7!, for all r>0, P(Vyelyo—71, yo+r[)>0
we will easily conclude in Section 7.

3. DIFFERENTIABILITY OF THE PERTURBED PROCESS

In this section, we consider a fixed perturbation v,. We compute
V™(l)=V,oS%, and we prove that for each ¢ in [0, T], this function is
twice differentiable on [ —1, 17.

3.1. The Perturbed Process

Recalling that b is defined by (1.6), that |cos 6 — 1| <62, and that (1.3)
is satisfied, one can easily check that Eq. (1.9) can be written:

v, = Vﬁﬂﬂ f (cos O—1) V,_ N(d0 do ds)

_fo Ll ji (sin 0) W,_(«) N(d0 do. ds) (3.1)

Hence, the perturbed process satisfies
1

V’t’(/l)zVO—i—rJ f (cos 0 — 1) V"_ (1) N»"(d0 da ds)

09Y0 Y—m=m

+L’ JOI f (cos 0—1) V"_(A) Ny(d0 do ds)

—T7

=) tf 1 ] " (sin 0) W, _()[ N§"(d0 do ds) — Bo0) dO dix s ]

_L’ L}l f (sin 0) W,_ (o) N,(dO dot ds) (32)

—T
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But

—ft fl f (sin ) W,_(a)[ N "(d0 doc ds) — fo(0) dO dox dis ]
04Y0 Y—=x

t rl pm ~
- f f j sin yA(s, 0, ) W,_(a) No(d0 do ds)
0°Y0 i1

_jtjl fﬂ (sin pi(s, 0, ) —sin 0) W,_(a) Bo(6) db do ds
0 Y0

—7

—f jlr (sin 6) )No(dﬁdocds)
_ Jo’ jol Ji (sin p2(s, 0, o) —sin 0) W, _(a) No(dO do ds) (3.3)

We finaly obtain:

V(i) = V0+Lt fol [ (cos yits, 0,000 = 1) V7_(2) No(dl o )

+ L, fol f (cos @ —1) V§_(4) Ny(d6 do ds)

—T

- L f: f_ (sin 0) W,_ () N(d0 da ds)

_HIJ” (sin yX(s, 0, ) —sin 0) W,_(a) No(dO duds)  (3.4)
0 Y0

—T

3.2. A Lipschitz Property

We study here the continuity of the map A+ V7(4), which will be
useful to study its differentiability. We set U4, u) = V(4) — V7(u). This
process satisfies:

t pl pom
Uttewy=| | [ teos yits. 0.0 = 1) UL (4 ) No(db da ds)

—T7

+j0t Jol fﬂ (cos @—1) U"_(4, i) N,(d6 de ds)
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t pl sm
+[ [ ] (cos yits, 0,00 —cos ph(s, 0, @) V2_ (1) Nold0 dox ds)
0 Y0

—T7

t pl rm
—j f j (sin pi(s, 0, «) —sin p4(s, 0, &) W,_ (o) No(dO da dis)
0v0 Y—=m

(3.5)
This equation is a linear S.D.E. If we set
t pl pm
K;’(A)zj f f (cos yA(s, 0, &) — 1) No(d0 doc ds)
090 Y—=x
t pl pm
[ ] (cos 0=1) Ny(d0 docds) (3.6)
04Y0 Y—=m

then we can write (see Jacod'?):

1

n ) n t rl pm . N 1
Uit i) = SR, [ [ SN s
x {V"_(p)[cos yi(s, 0, a) —cos y“(s, 0, )]

— W, _(a)[sin p2(s, 0, o) —sin p#(s, 0, x) 1} No(dO dads) — (3.7)

where the Doléans-Dade exponential is given by (see Jacod and
Shiryaev!®):

E(K"(2)),=eXi® [T (1+4K7(2)) e~ 4Ki»

Oo<u<t

= ] (1+4K4%) (3.8)

o<u<t

But since any cosinus is in [ —1, 1], it is clear that for all s <¢,

[6(K"(2), 6(K" (AN = ] N+4KiA)]<1 (39)

§—
s<u<t

Furthermore, since |y <6, <n/2, we see that

1
cos 7A(s, 0, %)

1

~
cos 0,

<o (3.10)
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At last, since [yZ(s, 0, a)| < 316],

|cos y5(s, 0, o) —cos y4i(s, 0, a)| < 5101 x |2 — | x [v,(s, 0, )|

(3.11)
sin p2(s, 0, &) —sin p“(s, 0, a)| < [A—u| x |v,(s, 0, )|
Hence, if
1 t pl pm 3
Y” — = n
(=g L[| 3100 ive G+ 1w, )
X [v,(s, 8, a)| No(dl do ds) (3.12)

then for all 4, u, |UT(4, p)] <|A—p| x Y?(A). In particular, this yields that
for all 4,

VIS IV + U 0| < IV + Yi(0) (13)
Finaly, if
1 t ol oz 3
X! = = Yo w.
e NN IR e P CR U TR )
x |0, (5, 0, )| No(d6) da ds) (3.14)
then for all 4, u,
U0 0 < ] X (315)

Since we know from Theorem 1.4 that

E(sup V2)=E,(sup W?)<w (3.16)

[0, T] [0, T]
we deduce that (recall that |v,(s, 0, )| <7, LY(Bo(0) dO)):

E( sup [Y7(0)])

[0, 7]

COSH f j JHO { 1017,(0) E(|V])+ [W(a)| n,(0) | Bo(0) dO do ds
0

<K[" 0,000 Bo(0) dox ECsup 1V,)

) [0, T]

+Kf '7,.(9)/30( ) dOx E,( sup |W,]|) < (3.17)

[0, T]
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and, by using exactly the same computation,

E(sup |X7])< (3.18)

[0, 7]

Thus X7 is a.s. finished on [0, 7], and we can say that V(1) satisfies a
Lipschitz property on [ —1, 1] (for each 7).

3.3. Differentiability

We set (for the moment, this is just a notation):

0 o n it 2 )~ ;
57 Vi) ==K (i)),fO fo f_n@‘(K () e % cos yA(s, 0, )

X {V7_(2)sin yi(s, 0, ) + W,_(a) cos y1(s, 0, a)}
% 0,(5, 0, ) No(d0 do ds) (3.19)

We obtained this expression by differentiating formaly (3.4), and by using
the same argument as in (3.7).

We set DA, u)=V7u)—VHA)—(uu—A)(0/01) V(). Let us com-
pute DY(4, u):

t ol pm 1
DG ) = SR, | [ [ RN 2 s
X {V"_ (1) X [cos (s, 0, @) — cos y(s, 0, &)
+ (e —2) sin yy(s, 0, ) v,(s, 0, )]
+ U _ (4, ) (e —A) sin pi(s, 0, o) v,(s, 0, o)
— W,_ () x [sin p(s, 0, o) — sin p2(s, 6, o)

— (s —A) cos yi(s, 0, ) v,(s, 0, 0)]} No(dO do ds) (3.20)

Then a simple computation using Egs. (3.9), (3.10), (3.15), and some-
thing like (3.11) shows that if

1 t rl om 3
n__ X" 2 = X"
St=cage L LT [0V 1 X2 630 00043 101 oy, 0,00 x X2

+% 10] x | W, _ ()] x v2(s, 6, (x)} No(dO do ds) (3.21)



740

then for all 4, y,
D3 )] < (2 —p)>x S°
Using Egs. (3.16), (3.18), and the fact that
v2(s, 0, ) + 0] x v,(s, 0, )| + 0] x v2(s, 0, &)
<(z+7m+37) n,(0) € L(Po(0) dO)

we see that

E(sup |S?|)<

[0, T']

Fournier

(3.22)

(3.23)

(3.24)

It is thus clear that V7(4) is differentiable on [ —1,1], and that its

derivative is (0/04) V(A).

3.4. Second Differentiability

One can check in the same way that (9/04) V(1) is differentiable, and

that its derivative is given by

az ] . t pl pm ” _ 1
Vi = oK), | | [ ek “cos 7(s. 0, 2)

0
X { — 2sin y(s, 0, o) 7 V(L) xv,(s, 0, x)
— V" _(4)cos yi(s, 0, ) Ui(S, 0, a)

+ W,_(a) sin p2(s, 6, a) v(s, 0, oc)} No(dO do ds)

3.5. Upper Bounds

We will soon use the following equations:

sl

(3.25)

(3.26)
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where
t pl sm ., 3 H 9
_COS 00 ‘[0 jo ‘[\771 |:(|VS | + YS—(O))X§ | | X |Un(S> s (X)|
+ [ W ()] x[v,(s, 0, oc)l} No(d do. ds) (3.27)

and

82

52 VWS (3.28)
where

1 t pl pm
li= 0, fo L f_n {3 0] x R _ % [v,(s, 0, &)

+ (Voo [+ Y7_(0)) x v5(s, 0, )

+ | W,_ ()] x% |0 x vﬁ(s, 0, oc)} No(dO do ds) (3.29)

4. CHOICE OF THE SEQUENCE OF PERTURBATIONS

Recall that
0 T r1 pm 1
oA V(0= j f j cos cos 0
x{V,_sin O+ W,_(a) cos 0} v,(s, 0, &) No(dO do ds) (4.1)
where K, = [} | [* . (cos 0 — 1) N(dO do ds).

The problem is now to choose v, in such a way that for some ¢ >0,
some K < oo, the probability

0
P<a/1 v (0)e e, K]>

goes to 1. First, we have to get rid of the random terms (K ), and &(K);*
n (4.1). To this end, we choose v,(s, 8, a) equal to 0 for s<T—a,, for
some sequence «, decreasing to 0, and we use the a.s. continuity of &(K)
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at T. Then we notice that the dominant term in V,_sin 6 + W,_(a) cos 6
is W,_(a) cos 8. We thus choose v,(s, 0, a) equal to 0 for || < 1/n (in order
that |v,| € LY(Bo(0) dO)) and equal to k |0 for |0] € [2/n, 0,] for some k >0
and 0, <0,. This way,

T 1 r7
j j j Isin 0] x |0,(s, 0, )| No(dO dot ds)
T—a,"0 “—=n
will go to 0, but if a,, is well-chosen, since from (SP), 0 ¢ L'(B,(0) dO),

f:_a J01 Jn [v,(s, 0, o)| No(dO do ds)

—T7

will go to infinity. Of course, this is not satisfying, but a stopping times will
allow us to “cutoff” this second integral.

Let us now be precise. First, let us recall a lemma that can be found
in Graham and Méléard, !V p. 15.

Lemma 4.1. Assume (H)-1. There exists 0<c<C< oo and ¢>0
such that for all re[0, T],

Ple<|W,[<C)=q (4.2)

We will also need the following lemma

Lemma 4.2. One can build a sequence ¢, of positive, even, C! func-
tions on [ —0,, 0,] such that ¢,(—0,) = ¢,(0,) =0, such that ¢,(0) <k |0
for some k <1/2, such that if

0
£,(0) = [9,(0)] + 727+ d’léﬂ (43)

then &, e L'(By(0) dd) and &,<1/2, and such that there exists a sequence
a, decreasing to 0 satisfying

@[ 900 o) d0— o (44)

an [ (1018,00)+ 6200)) Bo0) d0— 0 (45)

760
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Proof. We clearly can build a sequence ¢, of even, positive and C'
functions such that, for some k € 10, 1/27, ¢,(6) <k |0|, such that

0 it 10]<1/n
d(0)=LKk|0 if |0]e[2/n, 0,/2(1+k)] (4.6)
0 it 10)€[0o/(1+k), 0]

and such that

0 if |0|<1/n
4k if |0le[1/n,2/n]

[P (0) << k it |0]e[2/n, 0,/2(1 +k)] (4.7)
2% if 101 €[00/2(1+k), 0p/(1+k)]
0 if |01€[0,/(1+k), 0]

Then ¢, is bounded, and vanishes near 0, it thus is in L!(B,(0) dO).
Furthermore, &, <4k 4+ r2"* 2k, which is smaller than 1/2 if we choose k
small enough. We now choose

0 —12
a=([" 00 pu0) @0) (48)

_90

We see that

% 09/2(1 + k)
[ g0 oy an=2 """ ko x"0 ao

—0, 2/n Or

J~00/2(1+k)

=2kk, 0' =" do (4.9)

2/n

goes to infinity when n goes to infinity, since r is greater than 2. Hence a,,
goes to 0, and condition (4.4) is satisfied. On the other hand,

0y 9, .
an [ (1016,0)+62(0)) po(0) d0<Ka, | *~ dO0<Ka,  (410)

which goes to 0 since < 3. The lemma is proved.
We now define a stopping time that will allow the derivative at 0 not
to be too large. Consider the following process:

t k3
n
z=,1 J
0 e |Wi()|<CY—m

,(0) No(dO dot ds) (4.11)
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We fix />0, and we set
T,,=inf{t>T—a,,/Z;’—Z’}_anzl} (4.12)

We now can define our sequence of perturbations (sg(x) denotes the signe
of x).

Un(s’ 9’ (x) = 1[T—an, T, A T](S) 1{c<|Wx7(zx)| <C} Sg(g(K)s—) Sg( Ws—(a')) ¢n(6)

(4.13)
For each n, v, is a perturbation (see Definition 2.1), since it is predictable,
and since it satisfies (2.1)—(2.3) thanks to Lemma 4.2.

We at last prove the essential following convergence:

lim P(T,<T)=1 (4.14)

n— oo

Indeed,

P(T,<T)=P(Zh—2Z7%_, =1)=1—eE(e~ %1 %1-4))

—T

T 4
>1—clexp {-j j j (1—e=%®) B(0) dOdads}
T—a,‘c<|W,_(a)<C

>1—e’exp{—anquéfn (/)n(e)ﬁo(e)de} (4.15)

which goes to 1 thanks to Eq. (4.4). We have used Lemma 4.1 and the fact

that since ¢, is smaller than 1, 1 —e=%>¢, /2.

5. THE DERIVATIVE AT 0 IS LARGE ENOUGH

Thanks to our choice for the perturbation v,, we can write

O yuio)

a T

=|6(K) 7| %

T,AT 6y .
[ [ e
T—a, “c<|W_(0)|]<CY -0,

x{(tan 0) V,_ sg(W,_(a)) + W, _(a)|} §,(60) No(dO doc dls)
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T, AT 6
>16(K) [ " [ 16K x e x ,(0) No(d0 da ds)
T—a c<|W,_(x)|<C [

|j J j K); ' x|tan 0] x |[V,_| x $,(0) No(dO do ds)
T—a, ,90
>A4,—B, 51)
First A, is larger than

inf|6(K)y 6(K) M xex(Z, 1~ Z_,) (52)

[T—a,, T]

But &(K) is a.s. continuous (and does not vanish) at 7, thus the first term
in the product goes a.s. to 1. Furthermore, using Eqgs. (4.12) and (4.14), we
see that

lim P(Z%,—2Z7_,21)=1 (5.3)
It is thus clear that
lim P(A4,=cl2)=1 (5.4)

On the other hand,

B,< sup |E(K)p&E(K) ! x
[T_aET]I (K) 7 &6(K) | cos O

T 1 (0,
xj j j (V| % |0] $,(0) No(dO do. ds) (5.5)
T—a, 0 ¥ —
First, we have already seen (see Eq. (3.9)) that the first term in the product
is always smaller than 1. The last term goes to 0 in L', thanks to (4.5) and
(3.16), since

LT LT 17 11016,0) Notdo )

—a, 0 * =6,

< E(sup |Vs,|>xa,,j0° 101 6,(0) Bol0) (5.6)

[0, T] -
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Hence B, goes to 0 in probability, and we finaly deduce that

lim P <‘80) V’}(O)’ = cl/4> =1 (5.7)

n— oo

The first part of our criterion is satisfied.

6. THE DERIVATIVES ARE NOT TOO LARGE

We still have to check that there exists K< oo such that

0
P<sup (/1)’<K>—>1 (6.1)
1Al<1 a)
and
2
P V(M) <K|—1 2
<|i|“£1 oz ! )’ ) (62

We refer to Section 3. for the notations. In order to prove (6.1), we just
have to check that P(R%.<K) goes to 1 (see (3.26) and (3.27)). First, we
will need the following preliminary estimation (L is a constant independant
of n):

E[sup Y7(0)]<L (6.3)

[0, T]
But (M is a constant)

E[ sup Y7(0)]
[0, 77

SME“::TLW (a)l<cf;[|9| Vo + W, ()] ] $,(0) No(dO dot dis)
<ME [ 0T e 16,0 Ny ax dS)}

+MEUTT" L<|W (Wcj” 6,(0) No(dﬁdcxds)] (6.4)
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Thanks to the definition (4.12) of T,, the second term is smaller than
M(l+ ¢, ) But ¢, is always smaller than 1/2, and thus the second term
is smaller than M(/+ 1/2). On the other hand, the first term is smaller than

[T BV D% 101 8,000 Bol0) do dxds

9
< ME( sup |Vz|)><dnj 0] ¢.(0) Bo(0) dO (6.5)

[0, 71 —0,

which goes to 0, thanks to (4.5) and (3.16). Inequality (6.3) is satisfied.
We now write R” as (1/cos 0,)(2 R™' + R™?), where

RF:JT{V(”@J+ngnxwuh%&aanmﬂMde (6.6)
00 Y—=x
R”Z—J‘fj )| X |0,(s, 0, )| No(dO dox ds) (6.7)

It is clear, thanks to the definitions of v, and T,, and since ¢, < 1/2, that
R%*< C(1+1/2). On the other hand, (3.16), (6.3) and (4.5) yield that R%'
goes to 0 in L'. Hence, P(R%<2C(I+1/2)) goes to 1, and (6.1) is satisfied.

Notice that we have proved in particular that there exists a constant
L independant of n such that

E(sup RY)<L (6.8)

[0, T']

In order to prove (6.2), we have to check that P(I".<K) goes to 1
(recall (3.28) and (3.29)). Thanks to (4.5), (3.16), (6.3), and (6.8), we see
that

E(I'%)—0 (6.9)

which gives immediately the result.

Notice that we do not need to choose / (see the definition of T,
(4.12)): this might look strange, but it in fact is natural. First, if / is large,
then the derivative at 0 will be more easily large, but the derivative and
second derivative will be less easily bounded on [ —1,1]. As a second
reason, notice that we use a sequence of perturbations that would make
explode (9/04) V%.(0) if we did not use T,,.
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7. CONCLUSION
We have found some constants ¢ >0 and K < oo such that

82
lim P<‘V" ‘>e; sup = Vi) <
n— oo Al <1 a)

K)-1

(7.1)

0
2 VW)] <K: sup

g A<t

Let now y, be a point of the support of the law of V. Then for any
r>0,

0 0 0%
P(Ve—yol<r:| < vi(0)| = vel<k: sup | v <K
(Vr=yol <] 55 V300) 2 sup | vy <k sup |25 71 <K
s PV 1ol 1) >0 (72)

Theorem 2.3 allows us to say that f(7, y,)>0. Since we know from
Theorem 1.4 that f(7,-) is continuous on R, Remark 2.5 allows us to
deduce that for all yeR, f(7, y)>0. At last, since 7>0 has been
arbitrarily fixed, this holds for any 7 >0, and the proof of Theorem 1.5 is
finished.
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